Linggo, Abril 3, 2011

Markov Chains

A Markov chain, named for Andrey Markov, is a mathematical system that transits from one state to another (out of a finite or countable number of possible states) in a chainlike manner. It is a random process endowed with the Markov property: that the next state depends only on the current state and not on the past. Markov chains have many applications as statistical models of real-world processes.



 A Markov chain is a discrete (discrete-time) random process with the Markov property. Often, the term "Markov chain" is used to mean a Markov process which has a discrete (finite or countable) state-space. Usually a Markov chain would be defined for a discrete set of times (i.e. a discrete-time Markov chain)[1] although some authors use the same terminology where "time" can take continuous values.[2][3] Also see continuous-time Markov process. The use of the term in Markov chain Monte Carlo methodology covers cases where the process is in discrete-time (discrete algorithm steps) with a continuous state space. The following concentrates on the discrete-time discrete-state-space case.

Markov chain is the so-called "drunkard's walk", a random walk on the number line where, at each step, the position may change by +1 or −1 with equal probability. From any position there are two possible transitions, to the next or previous integer. The transition probabilities depend only on the current position, not on the way the position was reached. For example, the transition probabilities from 5 to 4 and 5 to 6 are both 0.5, and all other transition probabilities from 5 are 0. These probabilities are independent of whether the system was previously in 4 or 6.
Another example is the dietary habits of a creature who eats only grapes, cheese or lettuce, and whose dietary habits conform to the following (artificial) rules: it eats exactly once a day; if it ate cheese yesterday, it will not today, and it will eat lettuce or grapes with equal probability; if it ate grapes yesterday, it will eat grapes today with probability 1/10, cheese with probability 4/10 and lettuce with probability 5/10; finally, if it ate lettuce yesterday, it won't eat lettuce again today but will eat grapes with probability 4/10 or cheese with probability 6/10. This creature's eating habits can be modeled with a Markov chain since its choice depends on what it ate yesterday, not additionally on what it ate 2 or 3 (or 4, etc.) days ago. One statistical property one could calculate is the expected percentage of the time the creature will eat grapes over a long period.
A series of independent events—for example, a series of coin flips—does satisfy the formal definition of a Markov chain. However, the theory is usually applied only when the probability distribution of the next step depends non-trivially on the current state.

Walang komento:

Mag-post ng isang Komento